and even compounds is also evident from a comparison of the distribution of diffraction intensity in reciprocal space, all members of the series showing regions of relatively high intensity in the same positions.

The effective cross-sections of the paraffin chains normal to their chain direction, calculated from $1/8a_0b_0 \cos \tau$, have an average value of 19.6 Å.², and show a slight decrease with increasing chain length.

The average molar volume increment is found to be 29.6 cm.³/CH₂/mole.

DEPARTMENT OF CHEMISTRY UNIVERSITY OF WASHINGTON SEATTLE 5, WASHINGTON

Densities and Thermal Expansion Coefficients of Several Organofluoro Compounds

By Gene P. Rutledge and William T. Smith, Jr. Received June 29, 1953

The densities of several liquid organofluoro compounds were determined (see Table I) in an attempt to find some liquid having an exceptionally high thermal expansion coefficient for an industrial application. The expansion coefficient, α , is defined as $(d_1 - d_2)/d_2(T_2 - T_1)$ where d_1 is the density at the lower temperature, T_1 and d_2 the density at T_2 . Published density measurements¹ on perfluoro-*n*-heptane and perfluoro-1,3,5-trimethylcyclohexane indicate that large values of α might be expected for fluorine compounds. meters having ground glass caps and an approximate capacity of 11 ml. were used. Agitation of the thermostatic fluid, 18 liters of mineral oil, was accomplished by two turbine pumps which brought the oil from the bottom of the lagged metal vessel to the surface. A De Khotinsky thermoregulator which activated a Fisher-Surfass electronic relay afforded temperature control of $\pm 0.02^{\circ}$. The temperatures were measured using National Bureau of Standards thermometers. The average value of two density measurements was taken. From the precision of the temperature control, the accuracy of the weighing $(\pm 0.1 \text{ mg.})$ and the agreement obtained for duplicate samples, it is estimated that the coefficients are accurate to $\pm 1\%$ for a 10° range.

A comparison of the expansion coefficients of the fluorinated compounds (Table I) with values calculated from density measurements² on the corresponding unfluorinated compounds reveals, in general, that the coefficients are greater for the fluorinated compounds. For example, α -fluoroanisole has a coefficient 2% greater than anisole over the same temperature range. For α -fluoronaphthalene the coefficient is 3% greater than for naphthalene; p-fluorobromobenzene, 2% greater than bromobenzene and benzotrifluoride, 12% greater than toluene. Toluene and p-fluorotoluene have nearly identical coefficients.

Ethyl acetate has a high expansion coefficient, typical of esters. Ethyl difluoroacetate has an even higher coefficient and ethyl trifluoroacetate has a coefficient that is 31% greater than that of the

Table I Densities and Thermal Expansion Coefficients of Organofluoro Compounds at Various Temperatures

				Densit	y, g./ml.				
Тетр., °С.	Ethyl di- fluoro- acetate	Ethyl trifluoro- acetate	Benzotri- fluoride	fluoro-2,3,3- trichloro- propene	1,1-Difluoro- 3,3-dichloro- propene-2	<i>p</i> -Fluro- toluene	∲-Fluoro- bromo- benzene	α-Fluoro- naph- thalene	α-Fluoro- anisole
30.00	1.1600	1.1670	1.1762	1.5940	1.4401	0.9869	1.5859	1.1256	1.1054
40.00	1.1446	1.1466	1.1621	1.5753	1.4248	.9763	1.5710	1.1168	1.0948
50.00	1.1287	1.1260	1.1478	1.5549	1.4069				
60.00	1.1125		1.1353	1.5336	1.3881	.9548	1.5413	1.0995	1.0734
70.00	1.0958		1.1184	1.5117	1.3692				
80.00	1.0790		1.1033	1,4905	1.3503	.9329	1.5114	1.0821	1.0514
100.00						.9102	1.4803	1.0649	1.0297
120.00							1.4490	1.0464	1.0061
140.00							1.4167	1.0284	0.9824
160.00								1.0091	
Temp. range,									
°C.	10.5			Thermal exp	ansion coefficie	ent, α , $\times 10^{1}$) 		
30- 40	135	178	121	119	108	108	94	79	97
40- 50	141	183	124	131	127				
50- 60	145		129	139	135	110		***	
40- 60	150		100		100	113	96	78	100
60-70	152		133	145	138				
70- 80	157		137	142	140				
60- 80						118	99	80	104
80-100						125	105	81	106
100-120							108	88	117
120-140							114	88	121
140-160								96	

All of the liquids used were purified by distillation. Calibrated, Sprengel type, Pyrex glass pycno-(1) A. V. Grosse and G. H. Cady, Ind. Eng. Chem., 39, 375 (1947).

(2) "Annual Tables of Physical Constants," Sec. 301 (C), American Committee of Annual Tables, National Research Council, Princeton, New Jersey (1941). difluoroacetate. In general, it appears that an increase in the extent of fluorination of an organic compound results in an increase in thermal expansion coefficient.

Acknowledgment.—This work was carried out under a grant established at the University of Tennessee as the Fulton Fellowship by the Fulton– Sylphon Company of Knoxville, Tennessee.

Department of Chemistry University of Tennessee Knoxville, Tenn.

Decomposition of Nitrogen Pentoxide in the Presence of Nitric Oxide. IV. Effect of Noble Gases

By David J. Wilson and Harold S. Johnston Received June 22, 1953

The rate of the reaction $N_2O_5 + NO \rightarrow 3NO_2$ has been shown by Smith and Daniels¹ and by Mills and Johnston² to be that of an elementary unimolecular reaction. At around 0.1 mm. pressure in a 22-liter flask, the reaction is homogeneous and definitely within the second-order region.³ The lowconcentration second-order rate constants of a series of gases have been reported.⁴

Using the 22-liter bulb, and the same method of interpreting the data as was used previously,^{3,4} we have determined the low-concentration second-order rate constants of the noble gases and carbon tetrachloride. Reactant pressures were each about 0.08 mm., and foreign gas pressures ranged from 3 to 0.02 mm. Experimental results are given in Table I.

Table I

EXPERIMENTAL RESULTS

		second-order rate constant, cc. mole ⁻¹ sec. $^{-1} \times 10^{5}$					
M gas	No. of points	Intercept, sec. ⁻¹	Value	Standard error	Ratio to pure N2O6		
He	27	0.0132	2.80	0.26	0.124		
Ne	17	.0129	2.02	.32	.090		
Kr	26	.0119	3.57	.23	.159		
Xe	11	. 0134	3.30	.95	. 147		
CCl4	30	. 0130	12.4	1.3	. 551		

As shown previously, the activating efficiency function of the state i above the critical energy, $a_{\rm Mi}$, can be written as $a_{\rm Mi} = b_{\rm Mi}P_{\rm i}$, that is, the relative activating efficiency is also the relative deactivating efficiency. The function $b_{\rm Mi}$ is further factored, $b_{\rm Mi} = b_{\rm M}f_{\rm Mi}$, where $b_{\rm M}$ is the kinetic collision constant

$$b_{\rm M} = N_0 \left[8\pi RT \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \right]^{1/2} \left(\frac{\sigma_1 + \sigma_2}{2} \right)^2 \quad (1)$$

where N_0 is Avogadro's number; σ_1 and σ_2 , the collision diameters of the colliding particles; M_1 and M_2 , the molecular weights of the colliding particles; and R and T have their usual meaning. The func-

(1) J. H. Smith and F. Daniels, THIS JOURNAL, 69, 1735 (1947).

(2) R. L. Mills and H. S. Johnston, ibid., 73, 938 (1951).

(3) H. S. Johnston and R. L. Perrine, ibid., 78, 4782 (1951).

(4) H. S. Johnston, *ibid.*, **75**, 1567 (1953).

Notes

tion f_{Mi} is the efficiency factor for deactivation which in general may be a function of each state i and a different function for each foreign gas M.

If the collision constant can be calculated by 1, then the relative efficiencies with $b_{\rm M}$ factored out give the ratios $(\overline{f_{\rm M}})/(\overline{f_{\rm I}})$, where 1 stands for nitrogen pentoxide, and the bar indicates an average with respect to $P_{\rm i}$ over the excited states. If deactivation occurred at every collision or if $f_{\rm Mi}$ depended on the quantum states i of the reactant molecule only but not on the identity of the foreign gas M, this ratio would be unity every time. It is not. (See Table II. This table includes data calculated from reference 4.)

EFFICIENCY	AND	RELATIVE	EFFICIENCY
------------	-----	----------	------------

M gas	Mol. w t.	Collision diameter, Å.	$\frac{\text{concn. rate}}{\text{const./kinetic}}$ $\frac{\text{const.,}}{\text{const.,}}$ $\overline{(f_{\rm M})} \times 10^{10}$	(fx)/(f ₁)
He	4	2.18^{a}	6.02	0.0650
Ne	20	2,59*	7.95	.0855
Α	4 0	3.64ª	14.3	.154
Kr	83.8	4.16^{a}	19.3	.208
Xe	131.3	4.85^{a}	17.5	.189
N_2	28	3.75ª	21.2	. 228
NO	30	3.75	27.9	.300
CO_2	44	4.59ª	35.9	.387
CC14	154	5.46	62.5	. 673
SF_{θ}	146	4.52	41.2	. 443
N_2O_5	108	6.00	93.0	1.000

^a From E. H. Kennard, "Kinetic Theory of Gases," Mc-Graw-Hill Book Co., Inc., New York, N. Y., 1938, p. 149.

Furthermore, it is impossible to adjust the collision diameters of either nitrogen pentoxide or of the various M gases to obtain ratios $(\overline{f_M})/(\overline{f_1})$ that are equal to unity. For the molecular weights are accurately known, and the ratio, $(2\sigma_{N_i0_k}/\sigma_{N_j0_k} + \sigma_M)^2$, can never be greater than 4, which is not sufficiently large to account for the observed relative efficiencies of the noble gases and nitrogen. Thus, the efficiency function f_{M_i} does differ markedly from one gas to another. (These results do not answer the question as to whether or how the efficiency function varies over the states i of the reactant molecule.)

Relative efficiency increases slowly with molecular weight through at least krypton for the noble gases. It increases at constant molecular weight as one goes from noble gases to diatomic or polyatomic gases, and nitrogen pentoxide is much more efficient than anything else we have yet used. A study of the relative efficiencies of diatomic and polar gases is now in progress.

We are grateful to the National Science Foundation for a Fellowship in support of this work, and to the Office of Naval Research, Project NR-051-246, Contract N6 onr 25131.

DEPARTMENT OF CHEMISTRY STANFORD UNIVERSITY STANFORD, CAL.